Nitric oxide ( nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula (•N=O or •NO). Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.
An important intermediate in industrial chemistry, nitric oxide forms in combustion systems and can be generated by lightning in thunderstorms. In mammals, including humans, nitric oxide is a signaling molecule in many physiological and pathological processes. It was proclaimed the "Molecule of the Year" in 1992. The 1998 Nobel Prize in Physiology or Medicine was awarded for discovering nitric oxide's role as a cardiovascular signalling molecule. Its impact extends beyond biology, with applications in medicine, such as the development of sildenafil (Viagra), and in industry, including semiconductor manufacturing.
Nitric oxide should not be confused with nitrogen dioxide (NO2), a brown gas and major air pollutant, or with nitrous oxide (N2O), an anesthetic gas.
The lone electron in the 2π orbital makes NO a doublet in its ground state, whose degeneracy is split in the fine structure from spin–orbit coupling with a total momentum or .
Since the heat of formation of •NO is endothermic, NO can be decomposed to the elements. Catalytic converters in cars exploit this reaction:
When exposed to oxygen, nitric oxide converts into nitrogen dioxide:
This reaction is thought to occur via the intermediates ONOO• and the red compound ONOONO.
In water, nitric oxide reacts with oxygen to form nitrous acid (HNO2). The reaction is thought to proceed via the following stoichiometry:
Nitric oxide reacts with fluorine, chlorine, and bromine to form the nitrosyl halides, such as nitrosyl chloride:
With NO2, also a radical, NO combines to form the intensely blue dinitrogen trioxide:
The addition of a nitric oxide moiety to another molecule is often referred to as nitrosylation. The Traube reaction is the addition of a two equivalents of nitric oxide onto an enolate, giving a diazeniumdiolate (also called a nitrosohydroxylamine). The product can undergo a subsequent retro-aldol reaction, giving an overall process similar to the haloform reaction. For example, nitric oxide reacts with acetone and an alkoxide to form a diazeniumdiolate on each alpha carbon, with subsequent loss of methyl acetate as a by-product:
This reaction, which was discovered around 1898, remains of interest in nitric oxide prodrug research. Nitric oxide can also react directly with sodium methoxide, ultimately forming sodium formate and nitrous oxide by way of an N-methoxydiazeniumdiolate.
Sufficiently basic undergo a Traube-like reaction to give . However, very few nucleophiles undergo the Traube reaction, either failing to adduce NO or immediately decomposing with nitrous oxide release.
The uncatalyzed endothermic reaction of oxygen (O2) and nitrogen (N2), which is effected at high temperature (>2000 °C) by lightning has not been developed into a practical commercial synthesis (see Birkeland–Eyde process):
An alternative route involves the reduction of nitrous acid in the form of sodium nitrite or potassium nitrite:
The iron(II) sulfate route is simple and has been used in undergraduate laboratory experiments.
So-called NONOate compounds are also used for nitric oxide generation, especially in biological laboratories. However, other Traube adducts may decompose to instead give nitrous oxide.
Other methods of testing include electrochemistry (amperometric approach), where ·NO reacts with an electrode to induce a current or voltage change. The detection of NO radicals in biological tissues is particularly difficult due to the short lifetime and concentration of these radicals in tissues. One of the few practical methods is spin trapping of nitric oxide with iron-dithiocarbamate complexes and subsequent detection of the mono-nitrosyl-iron complex with electron paramagnetic resonance (EPR).
A group of fluorescent dye indicators that are also available in form for intracellular measurements exist. The most common compound is 4,5-diaminofluorescein (DAF-2).
This reaction is also utilized to measure concentrations of •NO in control volumes.
Nitric oxide, an endothelium-derived relaxing factor (EDRF), is biosynthesized endogenously from arginine, oxygen, and NADPH by various nitric oxide synthase (NOS) . Reduction of inorganic nitrate may also make nitric oxide. One of the main enzymatic targets of nitric oxide is guanylyl cyclase. The binding of nitric oxide to the heme region of the enzyme leads to activation, in the presence of iron. Nitric oxide is highly reactive (having a lifetime of a few seconds), yet diffuses freely across membranes. These attributes make nitric oxide ideal for a transient paracrine (between adjacent cells) and autocrine (within a single cell) signaling molecule. Once nitric oxide is converted to nitrates and nitrites by oxygen and water, cell signaling is deactivated.
The endothelium (inner lining) of uses nitric oxide to signal the surrounding smooth muscle to relax, resulting in vasodilation and increasing blood flow. Sildenafil (Viagra) is a drug that uses the nitric oxide pathway. Sildenafil does not produce nitric oxide, but enhances the signals that are downstream of the nitric oxide pathway by protecting cyclic guanosine monophosphate (cGMP) from degradation by cGMP-specific phosphodiesterase type 5 (PDE5) in the corpus cavernosum, allowing for the signal to be enhanced, and thus vasodilation. Another endogenous gaseous transmitter, Hydrogen sulfide works with NO to induce vasodilation and angiogenesis in a cooperative manner.
Nasal breathing produces higher levels of exhaled nitric oxide compared to mouth breathing.
Notes
Organic chemistry
Coordination complexes
Production and preparation
Laboratory methods
Detection and assay
which can be measured with a photodetector. The amount of light produced is proportional to the amount of nitric oxide in the sample.
Environmental effects
Acid rain deposition
Nitric acid, along with sulfuric acid, contributes to acid rain deposition.
Ozone depletion
Precursor to NO2
Biological functions
Occupational safety and health
Explosion hazard
Further reading
External links
|
|